Spirulina (dietary supplement)

Spirulina tablets

Nutritional value per 100 g (3.5 oz)
Energy 1,213 kJ (290 kcal)
Carbohydrates 23.9 g
– Sugars 3.1 g
– Dietary fiber 3.6 g
Fat 7.72 g
– saturated 2.65 g
– monounsaturated 0.675 g
– polyunsaturated 2.08 g
Protein 57.47 g
– Tryptophan 0.929 g
– Threonine 2.97 g
– Isoleucine 3.209 g
– Leucine 4.947 g
– Lysine 3.025 g
– Methionine 1.149 g
– Cystine 0.662 g
– Phenylalanine 2.777 g
– Tyrosine 2.584 g
– Valine 3.512 g
– Arginine 4.147 g
– Histidine 1.085 g
– Alanine 4.515 g
– Aspartic acid 5.793 g
– Glutamic acid 8.386 g
– Glycine 3.099 g
– Proline 2.382 g
– Serine 2.998 g
Water 4.68 g
Vitamin A equiv. 29 μg (4%)
– beta-carotene 342 μg (3%)
– lutein and zeaxanthin 0 μg
Thiamine (vit. B1) 2.38 mg (207%)
Riboflavin (vit. B2) 3.67 mg (306%)
Niacin (vit. B3) 12.82 mg (85%)
Pantothenic acid (B5) 3.48 mg (70%)
Vitamin B6 0.364 mg (28%)
Folate (vit. B9) 94 μg (24%)
Vitamin B12 0 μg (0%)
Choline 66 mg (13%)
Vitamin C 10.1 mg (12%)
Vitamin D 0 IU (0%)
Vitamin E 5 mg (33%)
Vitamin K 25.5 μg (24%)
Calcium 120 mg (12%)
Iron 28.5 mg (219%)
Magnesium 195 mg (55%)
Manganese 1.9 mg (90%)
Phosphorus 118 mg (17%)
Potassium 1363 mg (29%)
Sodium 1048 mg (70%)
Zinc 2 mg (21%)
Percentages are relative to
US recommendations for adults.
Source: USDA Nutrient Database

Spirulina is a cyanobacterium that can be consumed by humans and other animals and is made primarily from two species of cyanobacteria: Arthrospira platensis and Arthrospira maxima.

Arthrospira is cultivated worldwide; used as a dietary supplement as well as a whole food; and is available in tablet, flake and powder form. It is also used as a feed supplement in theaquaculture, aquarium and poultry industries.[1]



  • 1 Etymology and ecology
  • 2 Historical use
  • 3 Nutrient and vitamin content
    • 3.1 Vitamin B12
    • 3.2 Other nutrients
  • 4 Possible health benefits and risks
    • 4.1 Safety
      • 4.1.1 Toxicological studies
      • 4.1.2 Quality-related safety issues
      • 4.1.3 Safety issues for certain target groups
    • 4.2 In vitro research
    • 4.3 Human research
  • 5 Advocates
  • 6 See also
  • 7 Notes and references
  • 8 External links

[edit]Etymology and ecology

Main article: Arthrospira

The maxima and platensis species were once classified in the genus Spirulina. There is now agreement that they are in fact Arthrospira; nevertheless, and somewhat confusingly, the older term Spirulina remains in use for historical reasons.[1][2]

Arthrospira are free-floating filamentous cyanobacteria characterized by cylindrical, multicellular trichomes in an open left-hand helix. They occur naturally in tropical and subtropical lakes with high pH and high concentrations of carbonate and bicarbonate.[3]Arthrospira platensis occurs in Africa, Asia and South America, whereas Arthrospira maxima is confined to Central America.[1] Most cultivated spirulina is produced in open channel raceway ponds, with paddle-wheels used to agitate the water.[3] The largest commercial producers of spirulina are located in the United States, Thailand, India,Taiwan, China, Pakistan, Burma (a.k.a. Myanmar), Greece and Chile.[1]

[edit]Historical use

Spirulina was a food source for the Aztecs and other Mesoamericans until the 16th century; the harvest from Lake Texcoco and subsequent sale as cakes were described by one of Cortés’ soldiers.[4][5] The Aztecs called it “techuitlatl”.[3]

Spirulina was found in abundance at Lake Texcoco by French researchers in the 1960s, but there is no reference to its use by the Aztecs as a daily food source after the 16th century, probably due to the draining of the surrounding lakes for agricultural and urban development.[2][3] The first large-scale spirulina production plant, run by Sosa Texcoco, was established there in the early 1970s.[1]

Spirulina has also been traditionally harvested in Chad. It is dried into cakes called dihé, which are used to make broths for meals, and also sold in markets. The spirulina is harvested from small lakes and ponds around Lake Chad.[6]

[edit]Nutrient and vitamin content

Dried Spirulina contains about 60% (51–71%) protein. It is a complete protein containing all essential amino acids, though with reduced amounts of methionine, cysteine and lysinewhen compared to the proteins of meat, eggs and milk. It is, however, superior to typical plant protein, such as that from legumes.[2][7] The U.S. National Library of Medicine stated that spirulina was no better than milk or meat as a protein source, and was approximately 30 times more expensive per gram.[8]

[edit]Vitamin B12

Spirulina is not considered to be a reliable source of Vitamin B12. Spirulina supplements contain predominantly pseudovitamin B12, which is biologically inactive in humans.[9]Companies which grow and market spirulina have claimed it to be a significant source of B12 on the basis of alternative, unpublished assays, although their claims are not accepted by independent scientific organizations. The American Dietetic Association andDietitians of Canada in their position paper on vegetarian diets state that spirulina cannot be counted on as a reliable source of active vitamin B12.[10] The medical literature similarly advises that spirulina is unsuitable as a source of B12.[9][11]

[edit]Other nutrients

Spirulina’s lipid content is about 7% by weight,[12] and is rich in gamma-linolenic acid (GLA), and also provides alpha-linolenic acid(ALA), linoleic acid (LA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid(AA).[7][13] Spirulina contains vitamins B1 (thiamine), B2 (riboflavin), B3 (nicotinamide), B6 (pyridoxine), B9 (folic acid), vitamin C, vitamin D, vitamin A and vitamin E.[7][13] It is also a source of potassium, calcium, chromium, copper, iron, magnesium, manganese,phosphorus, selenium, sodium and zinc.[7][13] Spirulina contains many pigments which may be beneficial and bioavailable, includingbeta-carotene, zeaxanthin, chlorophyll-a, xanthophyll, echinenone, myxoxanthophyll, canthaxanthin, diatoxanthin, 3′-hydroxyechinenone, beta-cryptoxanthin and oscillaxanthin, plus the phycobiliproteins c-phycocyanin and allophycocyanin.[1]

[edit]Possible health benefits and risks


[edit]Toxicological studies

Toxicological studies of the effects of Spirulina consumption on humans and animals, including feeding as much as 800mg/kg,[14] and replacing up to 60% of protein intake with Spirulina,[15] have shown no toxic effects.[16] Fertility, teratogenicity, peri- and post-natal, and multi-generational studies on animals also have found no adverse effects from Spirulina consumption.[17] Spirulina intake has also been found to prevent damage caused by toxins affecting the heart, liver, kidneys, neurons, eyes, ovaries, DNA, and testicles.[17] In a 2009 study, 550 malnourished children were fed up to 10 g/day of Spirulina powder, with no adverse effects. Dozens of human clinical studies have similarly shown no harmful effects to Spirulina supplementation.[18]

The Food and Drug Administration has awarded the GRAS (Generally Recognized As Safe) designation to Spirulina from the American Spirulina companies Cyanotech, Earthrise, and RFI,[19][18] as well as to Spirulina produced by the Indian company Parry Pharmaceuticals.[20]

[edit]Quality-related safety issues

Spirulina is a form of cyanobacterium, some of which are known to produce toxins such as microcystins, BMAA, and others. Some spirulina supplements have been found to be contaminated with microcystins, albeit at levels below the limit set by the Oregon Health Department.[21] Microcystins can cause gastrointestinal disturbances and, in the long term, liver cancer. The effects of chronic exposure to even very low levels of microcystins are of concern, because of the potential risk of cancer.[21]

These toxic compounds are not produced by spirulina itself,[22] but may occur as a result of contamination of spirulina batches with other, toxin-producing, blue-green algae. Because spirulina is considered a dietary supplement in the U.S., there is no active, industry-wide regulation of its production and no enforced safety standards for its production or purity.[21] The U.S. National Institutes of Healthdescribes spirulina supplements as “possibly safe”, provided they are free of microcystin contamination, but “likely unsafe” (especially for children) if contaminated.[23] Given the lack of regulatory standards in the U.S., some public-health researchers have raised the concern that consumers cannot be certain that spirulina and other blue-green algae supplements are free of contamination.[21]

Heavy-metal contamination of spirulina supplements has also raised concern. The Chinese State Food and Drug Administrationreported that lead, mercury, and arsenic contamination was widespread in spirulina supplements marketed in China.[24]

[edit]Safety issues for certain target groups

Due to very high Vitamin K content, patients undergoing anticoagulant treatments should not change consumption patterns of Spirulina without seeking medical advice to adjust the level of medication accordingly.

As all protein-rich foods, Spirulina contains the essential amino acid phenylalanine (2.6-4.1 g/100 g),[3] which should be avoided by people who have the rare genetic disorder phenylketonuria, where the body cannot metabolize this amino acid and it builds up in the brain, causing damage.[25]

[edit]In vitro research

The primary active component of spirulina is Phycocyanobilin, which constitutes about 1% of Spirulina by weight.[26][27] This compound inhibits NADPH oxidase.[28] Spirulina has been studied in vitro against HIV,[29] as an iron-chelating agent,[30] and as a radioprotective agent.[31] Animal studies have evaluated spirulina in the prevention of chemotherapy-induced heart damage,[32] stroke recovery,[33] age-related declines in memory,[34] diabetes mellitus,[35] in amyotrophic lateral sclerosis,[36] and in rodent models of hay fever.[37]

[edit]Human research

In humans, small studies have been undertaken evaluating spirulina in undernourished children,[38] as a treatment for the cosmetic aspects of arsenic poisoning,[39] in hay fever and allergic rhinitis,[40][41] in arthritis,[42][Requires clarification, since IL-2 is typically thought of aspro-inflammatory] in hyperlipidemia and hypertension,[42][43] and as a means of improving exercise tolerance.[44]

At present, these studies are considered preliminary. According to the U.S. National Institutes of Health, at present there is insufficient scientific evidence to recommend spirulina supplementation for any human condition, and more research is needed to clarify its benefits, if any.[23]


Recognizing the potential of spirulina in the sustainable development agenda, several member states of the United Nations came together to form an intergovernmental organization named the Intergovernmental Institution for the use of Micro-algae Spirulina Against Malnutrition (IIMSAM).[45]

In the late 1980s and early ’90s both NASA (CELSS)[46] and the European Space Agency (MELISSA)[47] proposed Spirulina as one of the primary foods to be cultivated during long-term space missions.

[edit]See also

  • Algaculture – commercial farming of algae
  • Aphanizomenon flos-aquae

[edit]Notes and references

  1. a b c d e f Vonshak, A. (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. London: Taylor & Francis, 1997.
  2. a b c Ciferri O (December 1983). “Spirulina, the edible microorganism”. Microbiol. Rev. 47 (4): 551–78.PMC 283708. PMID 6420655.
  3. a b c d e Habib, M. Ahsan B.; Parvin, Mashuda; Huntington, Tim C.; Hasan, Mohammad R. (2008). “A Review on Culture, Production and Use of Spirulina as Food dor Humans and Feeds for Domestic Animals and Fish”. Food and Agriculture Organization of The United Nations. Retrieved November 20, 2011.
  4. ^ Diaz Del Castillo, B. The Discovery and Conquest of Mexico, 1517–1521. London: Routledge, 1928, p. 300.
  5. ^ Osborne, Ken; Kahn, Charles N. (2005). World History: Societies of the Past. Winnipeg: Portage & Main Press. ISBN 1-55379-045-6.
  6. ^ Abdulqader, G., Barsanti, L., Tredici, M. “Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu.” Journal of Applied Phycology. 12: 493-498. 2000.
  7. a b c d Babadzhanov A.S. et al.. “Chemical Composition of Spirulina Platensis Cultivated in Uzbekistan”. Chemistry of Natural Compounds 40 (3): 2004.
  8. ^ “Blue-green algae”. MedlinePlus. U.S. National Library of Medicine. November 18, 2010. Retrieved April 15, 2011.
  9. a b Watanabe F (2007). “Vitamin B12 sources and bioavailability.”. Exp. Biol. Med. (Maywood) 232 (10): 1266–74.doi:10.3181/0703-MR-67. PMID 17959839. “Most of the edible blue-green algae (cyanobacteria) used for human supplements predominantly contain pseudovitamin B(12), which is inactive in humans. The edible cyanobacteria are not suitable for use as vitamin B(12) sources, especially in vegans.”
  10. ^ Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets
  11. ^ Watanabe F, Katsura H, Takenaka S, Fujita T, Abe K, Tamura Y, Nakatsuka T, Nakano Y (1999). “Pseudovitamin B(12) is the predominant cobamide of an algal health food, spirulina tablets.”. J. Agric. Food Chem. 47 (11): 4736–41.doi:10.1021/jf990541b. PMID 10552882. “The results presented here strongly suggest that spirulina tablet algal health food is not suitable for use as a B12 source, especially in vegetarians.”
  12. ^ http://www.ejbiotechnology.info/content/vol9/issue4/full/5/
  13. a b c Tokusoglu O., Unal M.K.. “Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana”. Journal of Food Science 68 (4): 2003.
  14. ^ Krishnakumari, M.K.; Ramesh, H.P., Venkataraman, L.V. (1981). “Food Safety Evaluation: acute oral and dermal effects of the algae Scenedesmus acutus and Spirulina platensis on albino rats”. J. Food Protect. 44 (934).
  15. ^ Bizzi, A.; et al (1980). Materassi, R.. ed. “Trattamenti prolungati nel ratto con diete conntenenti proteine di Spirulina. Aspetti biochimici, morfologici e tossicologici [Extended Treatment of Rats with Diets Containing Spirulina. Biochemical, morphlogical, and toxicological aspects.]”. Prospettive della coltura di Spirulina in Italia (Accademia dei Geo rgofili, Firence)205.
  16. ^http://www.sciencedirect.com/science/article/pii/S0378874198000804
  17. a b Chamorro-Cevallos, G.; B.L. Barron, J. Vasquez-Sanchez (2008). Gershwin, M.E.. ed. “Toxicologic Studies and Antitoxic Properties of Spirulina”. Spirulina in Human Nutrition and Health (CRC Press).
  18. a bhttp://www.accessdata.fda.gov/scripts/fcn/gras_notices/GRN000394.pdf
  19. ^http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn_101.pdf
  20. ^http://www.accessdata.fda.gov/scripts/fcn/gras_notices/GRN391.pdf
  21. a b c d Gilroy, D., Kauffman, K., Hall, D., Huang, X., & Chu, F. (2000). “Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements”.Environmental Health Perspectives 108 (5): 435–439.doi:10.2307/3454384. JSTOR 3454384. PMC 1638057.PMID 10811570.
  22. ^ Belay, Amha (2008). “Spirulina (Arthrospira): Production and Quality Assurance”. Spirulina in Human Nutrition and Health, CRC Press: 1–25.
  23. a b “Blue-green algae”. MedlinePlus. National Institutes of Health. July 6, 2011. Retrieved October 4, 2011.
  24. ^ “China’s drug agency rejects state media claims of cover-up in lead found in health supplement”. Washington Post. April 10, 2012. Retrieved April 23, 2012.
  25. ^ Robb-Nicholson, C. (2006). “By the way, doctor”. Harvard Women’s Health Watch 8.
  26. ^ Piñero Estrada, J. E.; Bermejo Bescós, P.; Villar Del Fresno, A. M. (2001). “Antioxidant activity of different fractions of Spirulina platensis protean extract”. Farmaco (Societa chimica italiana : 1989) 56 (5–7): 497–500. doi:10.1016/S0014-827X(01)01084-9. PMID 11482785. edit
  27. ^ McCarty, M. F. (2007). “Clinical Potential ofSpirulinaas a Source of Phycocyanobilin”. Journal of Medicinal Food 10 (4): 566–570. doi:10.1089/jmf.2007.621. PMID 18158824. edit
  28. ^ Lanone, S.; Bloc, S.; Foresti, R.; Almolki, A.; Taillé, C.; Callebert, J.; Conti, M.; Goven, D. et al. (2005). “Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: Implications for protection against endotoxic shock in rats”. The FASEB Journal 19 (13): 1890–1892. doi:10.1096/fj.04-2368fje. PMID 16129699. edit
  29. ^ Ayehunie, S. et al. “Inhibition of HIV-1 Replication by an Aqueous Extract of Spirulina platensis (Arthrospira platensis).”JAIDS: Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology. 18, 1, May 1998: 7-12.
  30. ^ Barmejo-Bescós, P., Piñero-Estrada, E., &Villar del Fresno, A. (2008). “Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells”. Toxicology in Vitro 22 (6): 1496–1502.doi:10.1016/j.tiv.2008.05.004. PMID 18572379.
  31. ^ Radioprotective effect of extract from spirulina in mouse bone marrow cells studied by using the micronucleus test, by P. Qishen, Kolman et al. 1989. In Toxicology Letters 48: 165-169. China.
  32. ^ Khan M. et al. (December 2005). “Protective effect of Spirulina against doxorubicin-induced cardiotoxicity”. Phytotherapy Research 19 (12): 1030–7. doi:10.1002/ptr.1783.PMID 16372368.
  33. ^ Wang, Y., et al. “Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage.”Experimental Neurology. May, 2005 ;193(1):75-84.
  34. ^ Gemma, C., et al. “Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines.” Experimental Neurology. July 15, 2002; 22(14):6114-20.
  35. ^ Kulshreshtha, A., Zacharia, J., Jarouliya, U.,Bhadauriya, P., Prasad, G.B.K.S., & Bisen, P.S. (2008). “Spirulina in Health Care Management”. Current Pharmaceutical Biotechnology 9 (5): 400–405. doi:10.2174/138920108785915111.PMID 18855693.
  36. ^ “ALSUntangled No. 9: Blue-green algae (Spirulina) as a treatment for ALS”. Amyotroph Lateral Scler 12 (2): 153–5. March 2011. doi:10.3109/17482968.2011.553796.PMID 21323493.
  37. ^ Chen, LL, et al. “Experimental study of spirulina platensis in treating allergic rhinitis in rats.” 中南大学学报(医学版) = Journal of Central South University (Medical Sciences). Feb. 2005. 30(1):96-8.
  38. ^ Simpore, J., et al. “Nutrition Rehabilitation of HIV-Infected and HIV-Negative Undernourished Children Utilizing Spirulina.”Annals of Nutrition & Metabolism. 49, 2005: 373-380.
  39. ^ Mir Misbahuddin, AZM Maidul Islam, Salamat Khandker, Ifthaker-Al-Mahmud, Nazrul Islam and Anjumanara. Efficacy of spirulina extract plus zinc in patients of chronic arsenic poisoning: a randomized placebo-controlled study. (Risk factors ). Journal of Toxicology: Clinical Toxicology. 44.2 (March 2006): p135(7).
  40. ^ Mao TK et al. (Spring 2005). “Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitispatients”. Journal of Medicinal Food. 8 (1): 27–30.doi:10.1089/jmf.2005.8.27. PMID 15857205.
  41. ^ Cingi, C., Conk-Dalay, M., Cakli, H., & Bal, C. (2008). “The effects of Spirulina on allergic rhinitis”. European Archives of Oto-Rhino-Larynology 265 (10): 1219–1223.doi:10.1007/s00405-008-0642-8. PMID 18343939.
  42. a b Park, H.; Lee, Y.; Ryu, H.; Kim, M.; Chung, H.; Kim, W. (2008). “A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans”. Annals of nutrition & metabolism 52 (4): 322–328.doi:10.1159/000151486. PMID 18714150. edit
  43. ^ Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA (2007). “Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report”. Lipids Health Dis 6: 33. doi:10.1186/1476-511X-6-33. PMC 2211748. PMID 18039384.
  44. ^ Lu, H.K., Hsieh, C.C. Hsu, J.J., Yang, Y.K., & Chou, H.N. (2006). “Preventative effects of Spirulina platensis on skeletal muscle damage under exercise induced oxidative stress”.European Journal of Applied Physiology 98 (2): 220–226.doi:10.1007/s00421-006-0263-0. PMID 16944194.
  45. ^ IIMSAM, Intergovernmental Institution for the use of Micro-algae Spirulina Against Malnutrition
  46. ^ Characterization of Spirulina biomass for CELSS diet potential. Normal, Al.: Alabama A&M University, 1988.
  47. ^ Cornet J.F., Dubertret G. “The cyanobacterium Spirulina in the photosynthetic compartment of the MELISSA artificial ecosystem.” Workshop on artificial ecological systems, DARA-CNES, Marseille, France, October 24–26, 1990

From Wikipedia, the free encyclopedia